Examen Blanc N° 4 Pour Obtenir Diplôme Du Baccalauréat 2021 Ville ZAIO

Pag	ge
1	
	5

Matière	Mathématiques	Coeffici	9
Filière	Science mathématiques (A) et (B)	Durée	4

بسم الله الرحمن الرحيم

- La durée de l'épreuve est de 4 heures ;
- l'épreuve comporte (5) pages numérotées de 1/5 à 5/5 ;
- l'épreuve est composée de quatre exercices indépendants entre eux ;
- le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient.

- Exercice 2 qui concerne les nombres complexes...... 04,00 points

L'usage de la calculatrice est strictement interdit

N.B: toute réponse non justifiée ou non détaillée sera considérée comme fausse

Réalisés par : -Prof : Abdelali TAJJ10U

-Prof: Soufiane TAJJ10U

Prof: Abdelali TAJJIOU

©2021

Prol: Souliane TAJJIOU

Scanné avec CamScanner

Exercice 1: (4,00 points)

On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation suivante :

$$(E): a^2 + b^3 = 7$$

I- Soit $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ une solution de l'équation (E).

0.50 1. a. Montrer que : b = 1[2].

0.25 b. On pose : b = 2z + 1.

Montrer que : $a^2 + 1 = (2 - b) \times q$ tel que $q = 4z^2 + 8z + 7$.

0.25 c. Montrer que : q = 3[4].

2. Soit $q = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \cdots \times p_r^{\alpha_r}$ la décomposition de q en produit de facteurs premiers.

0.50 premiers. a. Montrer que : $(\forall i \in \{1, 2, \dots, r\})$; $p_i = 1[4]$ ou $p_i = 3[4]$.

b. Monter qu'il existe $j \in \{1, 2, \dots, r\}$ tel que : $p_j = 3[4]$.

3. a. En déduire qu'il existe un nombre premier p qui vérifie : $\begin{cases} a^2 + 1 \equiv 0[p] \\ p \equiv 3[4] \\ p \ge 3 \end{cases}$

0.75 b. En utilisant le théorème de FERMAT montrer que : $(-1)^{\frac{p-1}{2}} \equiv 1[p]$.

c. En déduire que : p = 1[4]

0.25 II- Déduire des questions précédentes que l'équation (E) n'admet pas de solution dans $\mathbb{Z} \times \mathbb{Z}$.

Exercice 2: (4,00 points)

<u>Partie I:</u>

0.50

On considère dans l'ensemble C, l'équation définie par :

 $(E_{\theta}): z^2 - 2\left(i + \cos\left(\theta + \frac{\pi}{4}\right)\right)z + 2i\cos\left(\theta + \frac{\pi}{4}\right) = 0 \text{ où } \theta \in \left]\frac{\pi}{4}, \frac{5\pi}{4}\right[.$

0.50 1. Résoudre dans l'ensemble \mathbb{C} l'équation (E_{θ}) .

0.50 2. Ecrire les solutions de (E_{θ}) sous la forme exponentielle

Partie II:

Dans le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) ,

\sum_{i}

Examen Nationale Blanc N° 4 Baccalauréat 2021 Science mathématiques (A) et (B) Ville ZAIO

E.B_21

Page 3

on considère : A, B, M_1 et M_2 les points d'affixes respectives $z_A = i$, $z_B = 2i$,

$$z_1 = i + e^{i\left(\theta + \frac{\pi}{4}\right)}$$
 et $z_2 = i + e^{-i\left(\theta + \frac{\pi}{4}\right)}$, où $\theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

1. Montrer que M_2 est l'image de M_1 par la translation de vecteur :

$$\overrightarrow{w}\left(-2i\sin\left(\theta+\frac{\pi}{4}\right)\right)$$

0.75 2. a. Déterminer et construire l'ensemble :

$$\Gamma = \left\{ M(z) \in (P); \arg\left(\frac{z-2i}{z}\right) \equiv -\frac{\pi}{2}[2\pi] \right\}$$

b. Montrer que lorsque θ varie sur l'intervalle $\frac{\pi}{4}, \frac{5\pi}{4}$, chacun des points

 M_1 et M_2 varies sur l'ensemble Γ .

0.75 c. On suppose que : $\theta \in I = \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ et soit G le centre de gravité du triangle AM_1M_2 .

Déterminer l'ensemble des points G lorsque θ varie dans I.

3. Soit M le point d'affixe m, tels que $m \in \mathbb{C} - \{0, 2i\}$ et $\theta \in I$. Déterminer l'ensemble des points M pour qu'ils soient appartient au cercle circonscrit au triangle OBM_1 .

Exercice 3: (2,50 points)

Pour tout entier naturel n, on pose : $I_n = \int_0^{\frac{\pi}{4}} \frac{1}{\cos^n(x)} dx$

0.50 1. Justifier que la suite $(I_n)_{n\geq 0}$ est bien définie et calculer I_0 et I_2 .

2. a. A l'aide d'un changement de variable, déterminer I_1 .

b. Etudier la monotonie de la suite $(I_n)_{n\geq 0}$.

3. a. Montrer que : $(\forall n \ge 2)$; $I_n \ge \int_{\left(\frac{\pi}{4} - \frac{1}{n^2}\right)}^{\frac{\pi}{4}} \frac{1}{\cos^n(x)} dx \ge \frac{1}{n^2} \times \frac{1}{\cos^n\left(\frac{\pi}{4} - \frac{1}{n^2}\right)}$.

b. En déduire : $\lim_{n\to +\infty} I_n$.

0.25

0.50 4. Montrer que : $(\forall n \in \mathbb{N})$; $I_{n+2} = \frac{(\sqrt{2})^n}{n+1} + \frac{n}{n+1}I_n$.

0.25

0.25

0.50

0.25

Exercice 4: (9,50 points)

On considère la fonction f définie sur l'intervalle [0,1] par :

$$f(0) = 0, f(1) = 1$$
 et $(\forall x \in]0,1[); f(x) = \frac{x-1}{\ln x}$

Et soit (C_f) sa courbe représentative dans un repère orthonormé (Q,i,j)

Partie I:

- 1. a. Montrer que la fonction f est continue sur [0,1]. 0.50
 - **b.** Etudier la dérivabilité de f à droite en 0.
 - **2.** Soit : $x \in [0,1[$.

b. Etudier la dérivabilité de
$$f$$
 à droite en 0.
a. Soit : $x \in]0,1[$.
a. Montrer que : $\int_{x}^{1} \frac{(1-t)^{2}}{t} dt + \frac{(1-x)^{2}}{2} = x + 1 + \ln x$.
b. Montrer que : $\forall t \in [x,1]; \ 0 \le \int_{-\infty}^{1} \frac{(1-x)^{2}}{t} dt \le \frac{(1-x)^{3}}{2\pi}$.

- **b.** Montrer que : $\forall t \in [x,1]$; $0 \le \int_{x}^{1} \frac{(1-t)^{3}}{t} dt \le \frac{(1-x)^{3}}{3x}$. 0.25
 - c. Montrer que : $\frac{x-1}{2 \ln x} \le \frac{x-1-\ln x}{(x-1) \ln x} \le \frac{x-1}{2 \ln x} \frac{(x-1)^2}{3x \ln x}$
- **d.** En déduire que f est dérivable à gauche en 1 et déterminer $f'_g(1)$. 0.50
- 3. a. Etudier le signe de la fonction φ définie sur]0,1] par $\varphi(x) = \frac{1}{x} 1 + \ln x$. 0.50
 - **b.** Etudier les variations de la fonction f.
- **c.** Tracer la courbe (C_f) . (On prend : $|\vec{i}| = 1 \ cm$). 0.50

Partie

On considère la suite numérique $(\alpha_n)_{n\geq 1}$ définie par :

$$\alpha_n = \int_{\frac{1}{1+n}}^{\frac{1}{n}} -\frac{\left(t-t^2\right)}{\left(1+t^2\right)f\left(t\right)} dt$$

- 1. Vérifier que : $(\forall n \ge 1)$; $\alpha_n = \int_{-1}^{\frac{1}{n}} \frac{t \ln t}{1+t^2} dt$.
- 2. Montrer que pour tout $n \ge 1$ on a : $\int_{-\frac{1}{n}}^{\frac{1}{n}} t \ln t \ dt \le \alpha_n \le \frac{1}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} t \ln t \ dt$.
- **3.** Calculer: $\lim_{n\to +\infty} \alpha_n$.

Examen Nationale Blanc N° 4 Baccalauréat 2021 Science mathématiques (A) et (B) Ville ZAIO

E.B_21

Page 5

Partie III:

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites numériques définies par :

$$\begin{cases} u_0 = \frac{1}{2} et \ u_{n+1} = f(u_n); \ (\forall n \in \mathbb{N}) \\ v_n = \frac{1}{1 - u_n} \int_{u_n}^1 f(t) dt; \ (\forall n \in \mathbb{N}) \end{cases}$$

- **0.25 1.** Montrer que : $(\forall n \in \mathbb{N})$; $0 < u_n < 1$.
- 0.50 2. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.
- **3.** En utilisant le théorème de la moyenne, montrer que $(\forall n \in \mathbb{N})$; $u_n < v_{n+1} < 1$ et donner : $\lim_{n \to +\infty} v_n$.

Partie IV:

Soit F et G les deux fonctions définies sur]0,1] par :

$$F(x) = \int_{x}^{1} f(t)dt \text{ et } G(x) = \int_{x^{2}}^{x} \frac{f(t)}{t}dt$$

0.50 1. a. Montrer que F et G sont dérivable sur]0,1] et que :

$$(\forall x \in]0,1]) F'(x) = G'(x) = -f(x).$$

- **0.25 b.** Déduire que : $(\forall x \in [0,1])$; F(x) = G(x).
- **0.25** 2. a. Montrer que $(\forall x \in]0,1[); \int_{x^2}^x \frac{-1}{t \ln t} dt = \ln 2.$
- **b.** Montrer que $(\forall x \in]0,1[); |F(x)-\ln 2| \le -\frac{x}{\ln x}$, puis déduire $\lim_{x\to 0^+} F(x)$.
- **0.50** 3. a. Montrer que pour tout x de]0,1[on a :

$$0 \le \int_0^1 f(t)dt - F(x) \le x$$

- **b.** Déduire : $\int_0^1 f(t)dt$.
- **4. a.** Montrer que f réalise une bijection de [0,1] sur [0,1]. On note f^{-1} sa bijection réciproque.
- **0.25 b.** Construire la courbe $(C_{f^{-1}})$ représentative de f^{-1} dans le repère (O, \vec{i}, \vec{j}) .
- **c.** Calculer l'aire de la partie du plan limitée par (C_f) , $(C_{f^{-1}})$ et les droites d'équations x = 0 et x = 1.

bonne chance! 29/05/2021

Fin du sujet